If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2=777
We move all terms to the left:
c^2-(777)=0
a = 1; b = 0; c = -777;
Δ = b2-4ac
Δ = 02-4·1·(-777)
Δ = 3108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3108}=\sqrt{4*777}=\sqrt{4}*\sqrt{777}=2\sqrt{777}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{777}}{2*1}=\frac{0-2\sqrt{777}}{2} =-\frac{2\sqrt{777}}{2} =-\sqrt{777} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{777}}{2*1}=\frac{0+2\sqrt{777}}{2} =\frac{2\sqrt{777}}{2} =\sqrt{777} $
| c^2=776 | | Z^1/2=9i | | Z^1/3=8i | | 4x²+10x=30 | | 7x-3(x-10)=4x+17-3x+19 | | 0,5333/x=8 | | Z^1/3=-8i | | X^2+100x+101=0 | | 49x+12.5=10 | | -6•(-1m-1)=-6 | | (60+x)×(40+x)=0 | | -2(3x-4)=5(2-x) | | 15-7x=8x-72 | | 0.1*x=3 | | 3(4m+6)−8=130 | | 25=y | | 5n−6=2n+15 | | 7m+4=4m+22 | | (17x+21)+123°=180 | | 18+2(5-x)=-17+45 | | 15/X=(2r)^2/r^2 | | (17x+21)=123° | | y=|-9+7| | | 4(-2x+4)+3x-1=0 | | 3(4-r)=-12 | | (x+7)^2-40=0 | | 1/4x20=x | | 13/24x48=x | | 1/2(6-x)=14 | | x^2=48-5x | | 7g+4=2g+54 | | -2x+13-32+10x=-1 |